19. Erica bought \(\frac{3\frac{1}{2}}{2} \) yards of fabric. If she uses \(\frac{2}{3} \) of the fabric to make a curtain, how much will she have left?

A. \(\frac{1}{6} \) yd.
B. \(\frac{1}{3} \) yd.
C. \(1\frac{1}{6} \) yd.
D. \(2\frac{1}{3} \) yd.

20. Jen wants to tile the floor of her kitchen. The floor is rectangular and measures 12 feet by 8 feet. If it costs $2.50 per square foot for the materials, what is the total cost of the materials for tiling the kitchen floor?

A. $160
B. $200
C. $220
D. $240

Elementary Algebra

A total of 12 questions of three types are administered in this test.

- The first type involves operations with integers and rational numbers, and includes computation with integers and negative rationals, the use of absolute values, and ordering.
- The second type involves operations with algebraic expressions using evaluation of simple formulas and expressions, and adding and subtracting monomials and polynomials. Questions involve multiplying and dividing monomials and polynomials, the evaluation of positive rational roots and exponents, simplifying algebraic fractions, and factoring.
- The third type of question involves translating written phrases into algebraic expressions and solving equations, inequalities, word problems, linear equations and inequalities, quadratic equations (by factoring), and verbal problems presented in an algebraic context.
7. \(\frac{4-(-6)}{-5} = \)
 A. \(\frac{2}{5} \)
 B. \(-\frac{2}{5} \)
 C. 2
 D. -2

8. If \(2x - 3(x + 4) = -5 \), then \(x = \)
 A. 7
 B. -7
 C. 17
 D. -17

9. \(-3(5 - 6) - 4(2 - 3) = \)
 A. -7
 B. 7
 C. -1
 D. 1

10. Which of the following expressions is equivalent to \(20 - \frac{4}{5}x \geq 16? \)
 A. \(x \leq 5 \)
 B. \(x \geq 5 \)
 C. \(x \geq 32\frac{1}{2} \)
 D. \(x \leq 32\frac{1}{2} \)

11. Which of the following lists of numbers is ordered from least to greatest?
 A. \(-\frac{1}{3}, -\frac{3}{5}, \frac{2}{3}, \frac{3}{5} \)
 B. \(-\frac{3}{5}, -\frac{1}{3}, 3, \frac{2}{3} \)
 C. \(-\frac{1}{3}, -\frac{3}{5}, \frac{2}{3}, \frac{3}{5} \)
 D. \(-\frac{3}{5}, -\frac{1}{3}, \frac{2}{3}, \frac{3}{5} \)

12. If \(5t + 2 = 6 \), then \(t = \)
 A. 8
 B. \(\frac{5}{4} \)
 C. \(\frac{4}{5} \)
 D. -8

13. For which of the following equations are \(x = 5 \) and \(x = -5 \) both solutions?
 A. \(x^2 - x^2 - 5x - 25 = 0 \)
 B. \(x^2 + 25 = 0 \)
 C. \(x^2 + 10x - 25 = 0 \)
 D. \(x^2 - 25 = 0 \)

14. If \(x \neq 0 \), then \(\frac{u}{x} + \frac{5u}{x} - \frac{u}{5x} = \)
 A. \(\frac{7x}{5u} \)
 B. \(\frac{5u}{7x} \)
 C. \(\frac{29u}{5x} \)
 D. \(\frac{31u}{5x} \)

15. The solution set of which of the following inequalities is graphed on the number line above?
 A. \(2x - 4 \geq -3 \)
 B. \(2x + 5 \leq 6 \)
 C. \(3x - 1 \leq 5 \)
 D. \(4x - 1 \geq 7 \)

16. How many solutions \((x, y)\) are there to the system of equations above?
 A. None
 B. One
 C. Two
 D. More than two

17. Which of the following is a factor of both \(x^2 - x - 6 \) and \(x^2 - 5x + 6 \)?
 A. \(x - 3 \)
 B. \(x + 3 \)
 C. \(x - 2 \)
 D. \(x + 2 \)
18. \(\frac{10x^6 + 8x^4}{2x^2} = \)
 A. \(9x^{12}\)
 B. \(14x^4\)
 C. \(5x^4 + 4x^2\)
 D. \(5x^3 + 2x^2\)

19. A rectangular yard has area 96 square feet. If the width of the yard is 4 feet less than the length, what is the perimeter, in feet, of the yard?
 A. 40
 B. 44
 C. 48
 D. 52

20. On Monday, it took Helen 3 hours to do a page of science homework exercises. The next day she did the same number of exercises in 2 hours. If her average rate on Monday was \(p\) exercises per hour, what was her average rate the next day, in terms of \(p\)?
 A. \(2(p + 1)\) exercises per hour
 B. \(3(p - 1)\) exercises per hour
 C. \(\frac{2}{3}p\) exercises per hour
 D. \(\frac{3}{2}p\) exercises per hour

College-Level Mathematics Test

The College-Level Mathematics test measures your ability to solve problems that involve college-level mathematics concepts. There are six content areas measured on this test: (a) Algebraic Operations, (b) Solutions of Equations and Inequalities, (c) Coordinate Geometry, (d) Applications and other Algebra Topics, (e) Functions and (f) Trigonometry. The Algebraic Operations content area includes the simplification of rational algebraic expressions, factoring and expanding polynomials, and manipulating roots and exponents. The Solutions of Equations and Inequalities content area includes the solution of linear and quadratic equations and inequalities, systems of equations, and other algebraic equations. The Coordinate Geometry content area presents questions involving plane geometry, the coordinate plane, straight lines, conics, sets of points in the plane, and graphs of algebraic functions. The Functions content area includes questions involving polynomial, algebraic, exponential and logarithmic functions. The Trigonometry content area includes trigonometric functions. The Applications and other Algebra Topics content area contains complex numbers, series and sequences, determinants, permutations and combinations, factorials, and word problems. A total of 20 questions are administered on this test.

Sample Questions

For each of the questions below, choose the best answer from the four choices given. You may use the paper you received as scratch paper.

1. \(2^5 - 2^3\)
 A. \(2^7\)
 B. 2
 C. \(2^{10}\)
 D. \(2^5\)
 E. \(2^3\)